Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep Med ; 4(8): 101130, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490914

RESUMO

Signal regulatory protein (SIRPα) is an immune inhibitory receptor expressed by myeloid cells to inhibit immune cell phagocytosis, migration, and activation. Despite the progress of SIRPα and CD47 antagonist antibodies to promote anti-cancer immunity, it is not yet known whether SIRPα receptor agonism could restrain excessive autoimmune tissue inflammation. Here, we report that neutrophil- and monocyte-associated genes including SIRPA are increased in inflamed tissue biopsies from patients with rheumatoid arthritis and inflammatory bowel diseases, and elevated SIRPA is associated with treatment-refractory ulcerative colitis. We next identify an agonistic anti-SIRPα antibody that exhibits potent anti-inflammatory effects in reducing neutrophil and monocyte chemotaxis and tissue infiltration. In preclinical models of arthritis and colitis, anti-SIRPα agonistic antibody ameliorates autoimmune joint inflammation and inflammatory colitis by reducing neutrophils and monocytes in tissues. Our work provides a proof of concept for SIRPα receptor agonism for suppressing excessive innate immune activation and chronic inflammatory disease treatment.


Assuntos
Colite , Neoplasias , Humanos , Fagocitose , Neoplasias/tratamento farmacológico , Neutrófilos/metabolismo , Inflamação/patologia , Colite/metabolismo
2.
Sci Transl Med ; 14(675): eabp9159, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36516271

RESUMO

The epidermis is a barrier that prevents water loss while keeping harmful substances from penetrating the host. The impermeable cornified layer of the stratum corneum is maintained by balancing continuous turnover driven by epidermal basal cell proliferation, suprabasal cell differentiation, and corneal shedding. The epidermal desquamation process is tightly regulated by balance of the activities of serine proteases of the Kallikrein-related peptidases (KLK) family and their cognate inhibitor lymphoepithelial Kazal type-related inhibitor (LEKTI), which is encoded by the serine peptidase inhibitor Kazal type 5 gene. Imbalance of proteolytic activity caused by a deficiency of LEKTI leads to excessive desquamation due to increased activities of KLK5, KLK7, and KLK14 and results in Netherton syndrome (NS), a debilitating condition with an unmet clinical need. Increased activity of KLKs may also be pathological in other dermatoses such as atopic dermatitis (AD). Here, we describe the discovery of inhibitory antibodies against murine KLK5 and KLK7 that could compensate for the deficiency of LEKTI in NS. These antibodies are protective in mouse models of NS and AD and, when combined, promote improved skin barrier integrity and reduced inflammation. To translate these findings, we engineered a humanized bispecific antibody capable of potent inhibition of human KLK5 and KLK7. A crystal structure of KLK5 bound to the inhibitory Fab revealed that the antibody binds distal to its active site and uses a relatively unappreciated allosteric inhibition mechanism. Treatment with the bispecific anti-KLK5/7 antibody represents a promising therapy for clinical development in NS and other inflammatory dermatoses.


Assuntos
Dermatite Atópica , Síndrome de Netherton , Dermatopatias , Camundongos , Humanos , Animais , Síndrome de Netherton/genética , Síndrome de Netherton/metabolismo , Síndrome de Netherton/patologia , Dermatite Atópica/patologia , Inibidor de Serinopeptidase do Tipo Kazal 5/metabolismo , Epiderme/patologia , Dermatopatias/metabolismo , Anticorpos/metabolismo , Calicreínas/metabolismo
3.
J Allergy Clin Immunol ; 150(4): 972-978.e7, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35487308

RESUMO

BACKGROUND: Clinical studies of type 2 (T2) cytokine-related neutralizing antibodies in asthma have identified a substantial subset of patients with low levels of T2 inflammation who do not benefit from T2 cytokine neutralizing antibody treatment. Non-T2 mechanisms are poorly understood in asthma but represent a redefined unmet medical need. OBJECTIVE: We sought to gain a better understanding of genetic contributions to T2-low asthma. METHODS: We utilized an unbiased genome-wide association study of patients with moderate to severe asthma stratified by T2 serum biomarker periostin. We also performed additional expression and biological analysis for the top genetic hits. RESULTS: We identified a novel protective single nucleotide polymorphism at chr19q13.41, which is selectively associated with T2-low asthma and establishes Kallikrein-related peptidase 5 (KLK5) as the causal gene mediating this association. Heterozygous carriers of the single nucleotide polymorphisms have reduced KLK5 expression. KLK5 is secreted by human bronchial epithelial cells and elevated in asthma bronchial alveolar lavage. T2 cytokines IL-4 and IL-13 downregulate KLK5 in human bronchial epithelial cells. KLK5, dependent on its catalytic function, induces epithelial chemokine/cytokine expression. Finally, overexpression of KLK5 in airway or lack of an endogenous KLK5 inhibitor, SPINK5, leads to spontaneous airway neutrophilic inflammation. CONCLUSION: Our data identify KLK5 to be the causal gene at a novel locus at chr19q13.41 associated with T2-low asthma.


Assuntos
Asma , Estudo de Associação Genômica Ampla , Anticorpos Neutralizantes/genética , Asma/genética , Quimiocinas/genética , Citocinas/metabolismo , Humanos , Inflamação/genética , Interleucina-13/genética , Interleucina-4/genética , Calicreínas/genética , Calicreínas/metabolismo
4.
Nat Commun ; 11(1): 6435, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33353951

RESUMO

Human ß-tryptase, a tetrameric trypsin-like serine protease, is an important mediator of allergic inflammatory responses in asthma. Antibodies generally inhibit proteases by blocking substrate access by binding to active sites or exosites or by allosteric modulation. The bivalency of IgG antibodies can increase potency via avidity, but has never been described as essential for activity. Here we report an inhibitory anti-tryptase IgG antibody with a bivalency-driven mechanism of action. Using biochemical and structural data, we determine that four Fabs simultaneously occupy four exosites on the ß-tryptase tetramer, inducing allosteric changes at the small interface. In the presence of heparin, the monovalent Fab shows essentially no inhibition, whereas the bivalent IgG fully inhibits ß-tryptase activity in a hinge-dependent manner. Our results suggest a model where the bivalent IgG acts akin to molecular pliers, pulling the tetramer apart into inactive ß-tryptase monomers, and may provide an alternative strategy for antibody engineering.


Assuntos
Anticorpos Monoclonais/metabolismo , Imunoglobulina G/metabolismo , Triptases/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sequência de Aminoácidos , Heparina/farmacologia , Humanos , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Modelos Moleculares , Proteínas Mutantes/química , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica , Triptases/química
6.
Cell ; 179(2): 417-431.e19, 2019 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-31585081

RESUMO

Severe asthma patients with low type 2 inflammation derive less clinical benefit from therapies targeting type 2 cytokines and represent an unmet need. We show that mast cell tryptase is elevated in severe asthma patients independent of type 2 biomarker status. Active ß-tryptase allele count correlates with blood tryptase levels, and asthma patients carrying more active alleles benefit less from anti-IgE treatment. We generated a noncompetitive inhibitory antibody against human ß-tryptase, which dissociates active tetramers into inactive monomers. A 2.15 Å crystal structure of a ß-tryptase/antibody complex coupled with biochemical studies reveal the molecular basis for allosteric destabilization of small and large interfaces required for tetramerization. This anti-tryptase antibody potently blocks tryptase enzymatic activity in a humanized mouse model, reducing IgE-mediated systemic anaphylaxis, and inhibits airway tryptase in Ascaris-sensitized cynomolgus monkeys with favorable pharmacokinetics. These data provide a foundation for developing anti-tryptase as a clinical therapy for severe asthma.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Asma/terapia , Mastócitos/enzimologia , Mastócitos/imunologia , Triptases/antagonistas & inibidores , Triptases/imunologia , Adolescente , Regulação Alostérica/imunologia , Animais , Linhagem Celular , Feminino , Humanos , Macaca fascicularis , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Coelhos
7.
J Immunol ; 195(3): 953-64, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26116508

RESUMO

NF-κB-inducing kinase (NIK) is a primary regulator of the noncanonical NF-κB signaling pathway, which plays a vital role downstream of BAFF, CD40L, lymphotoxin, and other inflammatory mediators. Germline deletion or inactivation of NIK in mice results in the defective development of B cells and secondary lymphoid organs, but the role of NIK in adult animals has not been studied. To address this, we generated mice containing a conditional allele of NIK. Deletion of NIK in adult mice results in decreases in B cell populations in lymph nodes and spleen, similar to what is observed upon blockade of BAFF. Consistent with this, B cells from mice in which NIK is acutely deleted fail to respond to BAFF stimulation in vitro and in vivo. In addition, mice with induced NIK deletion exhibit a significant decrease in germinal center B cells and serum IgA, which is indicative of roles for NIK in additional pathways beyond BAFF signaling. Our conditional NIK-knockout mice may be broadly useful for assessing the postdevelopmental and cell-specific roles of NIK and the noncanonical NF-κB pathway in mice.


Assuntos
Fator Ativador de Células B/genética , Linfócitos B/imunologia , Ativação Linfocitária/genética , Subunidade p52 de NF-kappa B/biossíntese , Proteínas Serina-Treonina Quinases/genética , Animais , Linfócitos B/citologia , Diferenciação Celular/imunologia , Sobrevivência Celular/genética , Sobrevivência Celular/imunologia , Mutação em Linhagem Germinativa , Quinase I-kappa B/metabolismo , Imunoglobulina A/sangue , Linfonodos/citologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Subunidade p52 de NF-kappa B/genética , Deleção de Sequência , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Baço/citologia , Tamoxifeno/farmacologia
8.
J Biol Chem ; 287(52): 43331-9, 2012 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-23118228

RESUMO

The ability of bispecific antibodies to simultaneously bind two unique antigens has great clinical potential. However, most approaches utilized to generate bispecific antibodies yield antibody-like structures that diverge significantly from the structure of archetype human IgG, and those that do approach structural similarity to native antibodies are often challenging to engineer and manufacture. Here, we present a novel platform for the mammalian cell production of bispecific antibodies that differ from their parental mAbs by only a single point mutation per heavy chain. Central to this platform is the addition of a leucine zipper to the C terminus of the C(H)3 domain of the antibody that is sufficient to drive the heterodimeric assembly of antibody heavy chains and can be readily removed post-purification. Using this approach, we developed various antibody constructs including one-armed Abs, bispecific antibodies that utilize a common light chain, and bispecific antibodies that pair light chains to their cognate heavy chains via peptide tethers. We have applied this technology to various antibody pairings and will demonstrate the engineering, purification, and biological activity of these antibodies herein.


Assuntos
Anticorpos Biespecíficos , Anticorpos Monoclonais , Imunoglobulina G , Engenharia de Proteínas/métodos , Anticorpos Biespecíficos/biossíntese , Anticorpos Biespecíficos/genética , Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/genética , Linhagem Celular , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/genética , Cadeias Pesadas de Imunoglobulinas/biossíntese , Cadeias Pesadas de Imunoglobulinas/genética , Mutação Puntual
9.
Am J Pathol ; 179(4): 1667-80, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21819959

RESUMO

Experimental nonhuman primate models of asthma exhibit multiple features that are characteristic of an eosinophilic/T helper 2 (Th2)-high asthma subtype, characterized by the increased expression of Th2 cytokines and responsive genes, in humans. Here, we determine the molecular pathways that are present in a house dust mite-induced rhesus asthma model by analyzing the genomewide lung gene expression profile of the rhesus model and comparing it with that of human Th2-high asthma. We find that a prespecified human Th2 inflammation gene set from human Th2-high asthma is also present in rhesus asthma and that the expression of the genes comprising this gene set is positively correlated in human and rhesus asthma. In addition, as in human Th2-high asthma, the Th2 gene set correlates with physiologic markers of allergic inflammation and disease in rhesus asthma. Comparison of lung gene expression profiles from human Th2-high asthma, the rhesus asthma model, and a common mouse asthma model indicates that genes associated with Th2 inflammation are shared by all three species. However, some pathophysiologic aspects of human asthma (ie, subepithelial fibrosis, angiogenesis, neural biology, and immune host defense biology) are better represented in the gene expression profile of the rhesus model than in the mouse model. Further study of the rhesus asthma model may yield novel insights into the pathogenesis of human Th2-high asthma.


Assuntos
Asma/genética , Asma/fisiopatologia , Regulação da Expressão Gênica , Pulmão/imunologia , Pulmão/fisiopatologia , Macaca mulatta/imunologia , Transdução de Sinais/genética , Animais , Antígenos de Dermatophagoides/imunologia , Asma/complicações , Asma/imunologia , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Imunização , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Pulmão/metabolismo , Camundongos , Pyroglyphidae/imunologia , Células Th2/imunologia , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...